Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases.

نویسندگان

  • Jurgen J May
  • Nadine Kessler
  • Mohamed A Marahiel
  • Milton T Stubbs
چکیده

The synthesis of the catecholic siderophore bacillibactin is accomplished by the nonribosomal peptide synthetase (NRPS) encoded by the dhb operon. DhbE is responsible for the initial step in bacillibactin synthesis, the activation of the aryl acid 2,3-dihydroxybenzoate (DHB). The stand-alone adenylation (A) domain DhbE, the structure of which is presented here, exhibits greatest homology to other NRPS A-domains, acyl-CoA ligases and luciferases. It's structure is solved in three different states, without the ligands ATP and DHB (native state), with the product DHB-AMP (adenylate state) and with the hydrolyzed product AMP and DHB (hydrolyzed state). The 59.9-kDa protein folds into two domains, with the active site at the interface between them. In contrast to previous proposals of a major reorientation of the large and small domains on substrate binding, we observe only local structural rearrangements. The structure of the phosphate binding loop could be determined, a motif common to many adenylate-forming enzymes, as well as with bound DHB-adenylate and the hydrolyzed product DHB*AMP. Based on the structure and amino acid sequence alignments, an adapted specificity conferring code for aryl acid activating domains is proposed, allowing assignment of substrate specificity to gene products of previously unknown function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs)

We present a new support vector machine (SVM)-based approach to predict the substrate specificity of subtypes of a given protein sequence family. We demonstrate the usefulness of this method on the example of aryl acid-activating and amino acid-activating adenylation domains (A domains) of nonribosomal peptide synthetases (NRPS). The residues of gramicidin synthetase A that are 8 A around the s...

متن کامل

The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases.

BACKGROUND Many pharmacologically important peptides are synthesized nonribosomally by multimodular peptide synthetases (NRPSs). These enzyme templates consist of iterated modules that, in their number and organization, determine the primary structure of the corresponding peptide products. At the core of each module is an adenylation domain that recognizes the cognate substrate and activates it...

متن کامل

Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics.

Recently, the solved crystal structure of a phenylalanine-activating adenylation (A) domain enlightened the structural basis for the specific recognition of the cognate substrate amino acid in nonribosomal peptide synthetases (NRPSs). By adding sequence comparisons and homology modeling, we successfully used this information to decipher the selectivity-conferring code of NRPSs. Each codon combi...

متن کامل

Crystal structure of the termination module of a nonribosomal peptide synthetase.

Nonribosomal peptide synthetases (NRPSs) are modular multidomain enzymes that act as an assembly line to catalyze the biosynthesis of complex natural products. The crystal structure of the 144-kilodalton Bacillus subtilis termination module SrfA-C was solved at 2.6 angstrom resolution. The adenylation and condensation domains of SrfA-C associate closely to form a catalytic platform, with their ...

متن کامل

Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains.

BACKGROUND Nonribosomal peptide synthetases (NRPSs) are large modular proteins that selectively bind, activate and condense amino acids in an ordered manner. Substrate recognition and activation occurs by reaction with ATP within the adenylation (A) domain of each module. Recently, the crystal structure of the A domain from the gramicidin synthetase (GrsA) with L-phenylalanine and adenosine mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 19  شماره 

صفحات  -

تاریخ انتشار 2002